123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- import { NormalizedZoomValue, Point, Zoom } from "./types";
- import { LINE_CONFIRM_THRESHOLD } from "./constants";
- import { ExcalidrawLinearElement } from "./element/types";
- export const rotate = (
- x1: number,
- y1: number,
- x2: number,
- y2: number,
- angle: number,
- ): [number, number] =>
- // 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
- // 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
- // https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
- [
- (x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
- (x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
- ];
- export const rotatePoint = (
- point: Point,
- center: Point,
- angle: number,
- ): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
- export const adjustXYWithRotation = (
- sides: {
- n?: boolean;
- e?: boolean;
- s?: boolean;
- w?: boolean;
- },
- x: number,
- y: number,
- angle: number,
- deltaX1: number,
- deltaY1: number,
- deltaX2: number,
- deltaY2: number,
- ): [number, number] => {
- const cos = Math.cos(angle);
- const sin = Math.sin(angle);
- if (sides.e && sides.w) {
- x += deltaX1 + deltaX2;
- } else if (sides.e) {
- x += deltaX1 * (1 + cos);
- y += deltaX1 * sin;
- x += deltaX2 * (1 - cos);
- y += deltaX2 * -sin;
- } else if (sides.w) {
- x += deltaX1 * (1 - cos);
- y += deltaX1 * -sin;
- x += deltaX2 * (1 + cos);
- y += deltaX2 * sin;
- }
- if (sides.n && sides.s) {
- y += deltaY1 + deltaY2;
- } else if (sides.n) {
- x += deltaY1 * sin;
- y += deltaY1 * (1 - cos);
- x += deltaY2 * -sin;
- y += deltaY2 * (1 + cos);
- } else if (sides.s) {
- x += deltaY1 * -sin;
- y += deltaY1 * (1 + cos);
- x += deltaY2 * sin;
- y += deltaY2 * (1 - cos);
- }
- return [x, y];
- };
- export const getPointOnAPath = (point: Point, path: Point[]) => {
- const [px, py] = point;
- const [start, ...other] = path;
- let [lastX, lastY] = start;
- let kLine: number = 0;
- let idx: number = 0;
- // if any item in the array is true, it means that a point is
- // on some segment of a line based path
- const retVal = other.some(([x2, y2], i) => {
- // we always take a line when dealing with line segments
- const x1 = lastX;
- const y1 = lastY;
- lastX = x2;
- lastY = y2;
- // if a point is not within the domain of the line segment
- // it is not on the line segment
- if (px < x1 || px > x2) {
- return false;
- }
- // check if all points lie on the same line
- // y1 = kx1 + b, y2 = kx2 + b
- // y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
- // coefficient for the line (p0, p1)
- const kL = (y2 - y1) / (x2 - x1);
- // coefficient for the line segment (p0, point)
- const kP1 = (py - y1) / (px - x1);
- // coefficient for the line segment (point, p1)
- const kP2 = (py - y2) / (px - x2);
- // because we are basing both lines from the same starting point
- // the only option for collinearity is having same coefficients
- // using it for floating point comparisons
- const epsilon = 0.3;
- // if coefficient is more than an arbitrary epsilon,
- // these lines are nor collinear
- if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
- return false;
- }
- // store the coefficient because we are goint to need it
- kLine = kL;
- idx = i;
- return true;
- });
- // Return a coordinate that is always on the line segment
- if (retVal === true) {
- return { x: point[0], y: kLine * point[0], segment: idx };
- }
- return null;
- };
- export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
- const xd = x2 - x1;
- const yd = y2 - y1;
- return Math.hypot(xd, yd);
- };
- export const centerPoint = (a: Point, b: Point): Point => {
- return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
- };
- // Checks if the first and last point are close enough
- // to be considered a loop
- export const isPathALoop = (
- points: ExcalidrawLinearElement["points"],
- /** supply if you want the loop detection to account for current zoom */
- zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
- ): boolean => {
- if (points.length >= 3) {
- const [first, last] = [points[0], points[points.length - 1]];
- const distance = distance2d(first[0], first[1], last[0], last[1]);
- // Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
- // really close we make the threshold smaller, and vice versa.
- return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
- }
- return false;
- };
- // Draw a line from the point to the right till infiinty
- // Check how many lines of the polygon does this infinite line intersects with
- // If the number of intersections is odd, point is in the polygon
- export const isPointInPolygon = (
- points: Point[],
- x: number,
- y: number,
- ): boolean => {
- const vertices = points.length;
- // There must be at least 3 vertices in polygon
- if (vertices < 3) {
- return false;
- }
- const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
- const p: Point = [x, y];
- let count = 0;
- for (let i = 0; i < vertices; i++) {
- const current = points[i];
- const next = points[(i + 1) % vertices];
- if (doSegmentsIntersect(current, next, p, extreme)) {
- if (orderedColinearOrientation(current, p, next) === 0) {
- return isPointWithinBounds(current, p, next);
- }
- count++;
- }
- }
- // true if count is off
- return count % 2 === 1;
- };
- // Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
- // This is an approximation to "does `q` lie on a segment `pr`" check.
- const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
- return (
- q[0] <= Math.max(p[0], r[0]) &&
- q[0] >= Math.min(p[0], r[0]) &&
- q[1] <= Math.max(p[1], r[1]) &&
- q[1] >= Math.min(p[1], r[1])
- );
- };
- // For the ordered points p, q, r, return
- // 0 if p, q, r are colinear
- // 1 if Clockwise
- // 2 if counterclickwise
- const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
- const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
- if (val === 0) {
- return 0;
- }
- return val > 0 ? 1 : 2;
- };
- // Check is p1q1 intersects with p2q2
- const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
- const o1 = orderedColinearOrientation(p1, q1, p2);
- const o2 = orderedColinearOrientation(p1, q1, q2);
- const o3 = orderedColinearOrientation(p2, q2, p1);
- const o4 = orderedColinearOrientation(p2, q2, q1);
- if (o1 !== o2 && o3 !== o4) {
- return true;
- }
- // p1, q1 and p2 are colinear and p2 lies on segment p1q1
- if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
- return true;
- }
- // p1, q1 and p2 are colinear and q2 lies on segment p1q1
- if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
- return true;
- }
- // p2, q2 and p1 are colinear and p1 lies on segment p2q2
- if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
- return true;
- }
- // p2, q2 and q1 are colinear and q1 lies on segment p2q2
- if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
- return true;
- }
- return false;
- };
- // TODO: Rounding this point causes some shake when free drawing
- export const getGridPoint = (
- x: number,
- y: number,
- gridSize: number | null,
- ): [number, number] => {
- if (gridSize) {
- return [
- Math.round(x / gridSize) * gridSize,
- Math.round(y / gridSize) * gridSize,
- ];
- }
- return [x, y];
- };
|