123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- import { ExcalidrawElement, ExcalidrawLinearElement } from "./types";
- import { rotate } from "../math";
- import { Drawable } from "roughjs/bin/core";
- import { Point } from "../types";
- import { getShapeForElement } from "../renderer/renderElement";
- import { isLinearElement } from "./typeChecks";
- // If the element is created from right to left, the width is going to be negative
- // This set of functions retrieves the absolute position of the 4 points.
- export function getElementAbsoluteCoords(
- element: ExcalidrawElement,
- ): [number, number, number, number] {
- if (isLinearElement(element)) {
- return getLinearElementAbsoluteBounds(element);
- }
- return [
- element.x,
- element.y,
- element.x + element.width,
- element.y + element.height,
- ];
- }
- export function getDiamondPoints(element: ExcalidrawElement) {
- // Here we add +1 to avoid these numbers to be 0
- // otherwise rough.js will throw an error complaining about it
- const topX = Math.floor(element.width / 2) + 1;
- const topY = 0;
- const rightX = element.width;
- const rightY = Math.floor(element.height / 2) + 1;
- const bottomX = topX;
- const bottomY = element.height;
- const leftX = topY;
- const leftY = rightY;
- return [topX, topY, rightX, rightY, bottomX, bottomY, leftX, leftY];
- }
- export function getLinearElementAbsoluteBounds(
- element: ExcalidrawLinearElement,
- ): [number, number, number, number] {
- if (element.points.length < 2 || !getShapeForElement(element)) {
- const { minX, minY, maxX, maxY } = element.points.reduce(
- (limits, [x, y]) => {
- limits.minY = Math.min(limits.minY, y);
- limits.minX = Math.min(limits.minX, x);
- limits.maxX = Math.max(limits.maxX, x);
- limits.maxY = Math.max(limits.maxY, y);
- return limits;
- },
- { minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
- );
- return [
- minX + element.x,
- minY + element.y,
- maxX + element.x,
- maxY + element.y,
- ];
- }
- const shape = getShapeForElement(element) as Drawable[];
- // first element is always the curve
- const ops = shape[0].sets[0].ops;
- let currentP: Point = [0, 0];
- const { minX, minY, maxX, maxY } = ops.reduce(
- (limits, { op, data }) => {
- // There are only four operation types:
- // move, bcurveTo, lineTo, and curveTo
- if (op === "move") {
- // change starting point
- currentP = (data as unknown) as Point;
- // move operation does not draw anything; so, it always
- // returns false
- } else if (op === "bcurveTo") {
- // create points from bezier curve
- // bezier curve stores data as a flattened array of three positions
- // [x1, y1, x2, y2, x3, y3]
- const p1 = [data[0], data[1]] as Point;
- const p2 = [data[2], data[3]] as Point;
- const p3 = [data[4], data[5]] as Point;
- const p0 = currentP;
- currentP = p3;
- const equation = (t: number, idx: number) =>
- Math.pow(1 - t, 3) * p3[idx] +
- 3 * t * Math.pow(1 - t, 2) * p2[idx] +
- 3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
- p0[idx] * Math.pow(t, 3);
- let t = 0;
- while (t <= 1.0) {
- const x = equation(t, 0);
- const y = equation(t, 1);
- limits.minY = Math.min(limits.minY, y);
- limits.minX = Math.min(limits.minX, x);
- limits.maxX = Math.max(limits.maxX, x);
- limits.maxY = Math.max(limits.maxY, y);
- t += 0.1;
- }
- } else if (op === "lineTo") {
- // TODO: Implement this
- } else if (op === "qcurveTo") {
- // TODO: Implement this
- }
- return limits;
- },
- { minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
- );
- return [
- minX + element.x,
- minY + element.y,
- maxX + element.x,
- maxY + element.y,
- ];
- }
- export function getArrowPoints(
- element: ExcalidrawLinearElement,
- shape: Drawable[],
- ) {
- const ops = shape[0].sets[0].ops;
- const data = ops[ops.length - 1].data;
- const p3 = [data[4], data[5]] as Point;
- const p2 = [data[2], data[3]] as Point;
- const p1 = [data[0], data[1]] as Point;
- // we need to find p0 of the bezier curve
- // it is typically the last point of the previous
- // curve; it can also be the position of moveTo operation
- const prevOp = ops[ops.length - 2];
- let p0: Point = [0, 0];
- if (prevOp.op === "move") {
- p0 = (prevOp.data as unknown) as Point;
- } else if (prevOp.op === "bcurveTo") {
- p0 = [prevOp.data[4], prevOp.data[5]];
- }
- // B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
- const equation = (t: number, idx: number) =>
- Math.pow(1 - t, 3) * p3[idx] +
- 3 * t * Math.pow(1 - t, 2) * p2[idx] +
- 3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
- p0[idx] * Math.pow(t, 3);
- // we know the last point of the arrow
- const [x2, y2] = p3;
- // by using cubic bezier equation (B(t)) and the given parameters,
- // we calculate a point that is closer to the last point
- // The value 0.3 is chosen arbitrarily and it works best for all
- // the tested cases
- const [x1, y1] = [equation(0.3, 0), equation(0.3, 1)];
- // find the normalized direction vector based on the
- // previously calculated points
- const distance = Math.hypot(x2 - x1, y2 - y1);
- const nx = (x2 - x1) / distance;
- const ny = (y2 - y1) / distance;
- const size = 30; // pixels
- const arrowLength = element.points.reduce((total, [cx, cy], idx, points) => {
- const [px, py] = idx > 0 ? points[idx - 1] : [0, 0];
- return total + Math.hypot(cx - px, cy - py);
- }, 0);
- // Scale down the arrow until we hit a certain size so that it doesn't look weird
- // This value is selected by minizing a minmum size with the whole length of the arrow
- // intead of last segment of the arrow
- const minSize = Math.min(size, arrowLength / 2);
- const xs = x2 - nx * minSize;
- const ys = y2 - ny * minSize;
- const angle = 20; // degrees
- const [x3, y3] = rotate(xs, ys, x2, y2, (-angle * Math.PI) / 180);
- const [x4, y4] = rotate(xs, ys, x2, y2, (angle * Math.PI) / 180);
- return [x2, y2, x3, y3, x4, y4];
- }
- export function getCommonBounds(
- elements: readonly ExcalidrawElement[],
- ): [number, number, number, number] {
- if (!elements.length) {
- return [0, 0, 0, 0];
- }
- let minX = Infinity;
- let maxX = -Infinity;
- let minY = Infinity;
- let maxY = -Infinity;
- elements.forEach((element) => {
- const [x1, y1, x2, y2] = getElementAbsoluteCoords(element);
- const angle = element.angle;
- const cx = (x1 + x2) / 2;
- const cy = (y1 + y2) / 2;
- const [x11, y11] = rotate(x1, y1, cx, cy, angle);
- const [x12, y12] = rotate(x1, y2, cx, cy, angle);
- const [x22, y22] = rotate(x2, y2, cx, cy, angle);
- const [x21, y21] = rotate(x2, y1, cx, cy, angle);
- minX = Math.min(minX, x11, x12, x22, x21);
- minY = Math.min(minY, y11, y12, y22, y21);
- maxX = Math.max(maxX, x11, x12, x22, x21);
- maxY = Math.max(maxY, y11, y12, y22, y21);
- });
- return [minX, minY, maxX, maxY];
- }
|