123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- package com.yonge.audio.analysis;
- /*************************************************************************
- * Compilation: javac Complex.java Execution: java Complex
- *
- * Data type for complex numbers.
- *
- * The data type is "immutable" so once you create and initialize a Complex
- * object, you cannot change it. The "final" keyword when declaring re and im
- * enforces this rule, making it a compile-time error to change the .re or .im
- * fields after they've been initialized.
- *
- * % java Complex a = 5.0 + 6.0i b = -3.0 + 4.0i Re(a) = 5.0 Im(a) = 6.0 b + a =
- * 2.0 + 10.0i a - b = 8.0 + 2.0i a * b = -39.0 + 2.0i b * a = -39.0 + 2.0i a /
- * b = 0.36 - 1.52i (a / b) * b = 5.0 + 6.0i conj(a) = 5.0 - 6.0i |a| =
- * 7.810249675906654 tan(a) = -6.685231390246571E-6 + 1.0000103108981198i
- *
- *************************************************************************/
- public class Complex {
- private final double re; // the real part
- private final double im; // the imaginary part
- // create a new object with the given real and imaginary parts
- public Complex(double real, double imag) {
- re = real;
- im = imag;
- }
- // return a string representation of the invoking Complex object
- public String toString() {
- if (im == 0)
- return re + "";
- if (re == 0)
- return im + "i";
- if (im < 0)
- return re + " - " + (-im) + "i";
- return re + " + " + im + "i";
- }
- // return abs/modulus/magnitude and angle/phase/argument
- public double abs() {
- return Math.hypot(re, im);
- } // Math.sqrt(re*re + im*im)
- public double phase() {
- return Math.atan2(im, re);
- } // between -pi and pi
- // return a new Complex object whose value is (this + b)
- public Complex plus(Complex b) {
- Complex a = this; // invoking object
- double real = a.re + b.re;
- double imag = a.im + b.im;
- return new Complex(real, imag);
- }
- // return a new Complex object whose value is (this - b)
- public Complex minus(Complex b) {
- Complex a = this;
- double real = a.re - b.re;
- double imag = a.im - b.im;
- return new Complex(real, imag);
- }
- // return a new Complex object whose value is (this * b)
- public Complex times(Complex b) {
- Complex a = this;
- double real = a.re * b.re - a.im * b.im;
- double imag = a.re * b.im + a.im * b.re;
- return new Complex(real, imag);
- }
- // scalar multiplication
- // return a new object whose value is (this * alpha)
- public Complex times(double alpha) {
- return new Complex(alpha * re, alpha * im);
- }
- // return a new Complex object whose value is the conjugate of this
- public Complex conjugate() {
- return new Complex(re, -im);
- }
- // return a new Complex object whose value is the reciprocal of this
- public Complex reciprocal() {
- double scale = re * re + im * im;
- return new Complex(re / scale, -im / scale);
- }
- // return the real or imaginary part
- public double re() {
- return re;
- }
- public double im() {
- return im;
- }
- // return a / b
- public Complex divides(Complex b) {
- Complex a = this;
- return a.times(b.reciprocal());
- }
- // return a new Complex object whose value is the complex exponential of
- // this
- public Complex exp() {
- return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re)
- * Math.sin(im));
- }
- // return a new Complex object whose value is the complex sine of this
- public Complex sin() {
- return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re)
- * Math.sinh(im));
- }
- // return a new Complex object whose value is the complex cosine of this
- public Complex cos() {
- return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re)
- * Math.sinh(im));
- }
- // return a new Complex object whose value is the complex tangent of this
- public Complex tan() {
- return sin().divides(cos());
- }
- // a static version of plus
- public static Complex plus(Complex a, Complex b) {
- double real = a.re + b.re;
- double imag = a.im + b.im;
- Complex sum = new Complex(real, imag);
- return sum;
- }
-
- public static void main(String[] args) {
- Complex a = new Complex(5.0, 0.0);
- Complex b = new Complex(-3.0, 4.0);
- System.out.println("a = " + a);
- System.out.println("b = " + b);
- System.out.println("Re(a) = " + a.re());
- System.out.println("Im(a) = " + a.im());
- System.out.println("b + a = " + b.plus(a));
- System.out.println("a - b = " + a.minus(b));
- System.out.println("a * b = " + a.times(b));
- System.out.println("b * a = " + b.times(a));
- System.out.println("a / b = " + a.divides(b));
- System.out.println("(a / b) * b = " + a.divides(b).times(b));
- System.out.println("conj(a) = " + a.conjugate());
- System.out.println("|a| = " + a.abs());
- System.out.println("tan(a) = " + a.tan());
- }
- }
|